Nucleotide excision repair gene expression after Cisplatin treatment in melanoma.

نویسندگان

  • Nikola A Bowden
  • Katie A Ashton
  • Kelly A Avery-Kiejda
  • Xu Dong Zhang
  • Peter Hersey
  • Rodney J Scott
چکیده

Two of the hallmark features of melanoma are its development as a result of chronic UV radiation exposure and the limited efficacy of cisplatin in the disease treatment. Both of these DNA-damaging agents result in large helix-distorting DNA damage that is recognized and repaired by nucleotide excision repair (NER). The aim of this study was to examine the expression of NER gene transcripts, p53, and p21 in melanoma cell lines treated with cisplatin compared with melanocytes. Basal expression of all genes was greater in the melanoma cell lines compared with melanocytes. Global genome repair (GGR) transcripts showed significantly decreased relative expression (RE) in melanoma cell lines 24 hours after cisplatin treatment. The basal RE of p53 was significantly higher in the melanoma cell lines compared with the melanocytes. However, induction of p53 was only significant in the melanocytes at 6 and 24 hours after cisplatin treatment. Inhibition of p53 expression significantly decreased the expression of all the GGR transcripts in melanocytes at 6 and 24 hours after cisplatin treatment. Although the RE levels were lower with p53 inhibition, the induction of the GGR genes was very similar to that in the control melanocytes and increased significantly across the time points. The findings from this study revealed reduced GGR transcript levels in melanoma cells 24 hours after cisplatin treatment. Our findings suggest a possible mechanistic explanation for the limited efficacy of cisplatin treatment and the possible role of UV light in melanoma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulators of Global Genome Repair Do Not Respond to DNA Damaging Therapy but Correlate with Survival in Melanoma

Nucleotide excision repair (NER) orchestrates the repair of helix distorting DNA damage, induced by both ultraviolet radiation (UVR) and cisplatin. There is evidence that the global genome repair (GGR) arm of NER is dysfunctional in melanoma and it is known to have limited induction in melanoma cell lines after cisplatin treatment. The aims of this study were to examine mRNA transcript levels o...

متن کامل

leotide Excision Repair Gene Expression after Cisplatin

Downlo of the hallmark features of melanoma are its development as a result of chronic UV radiation exposure e limited efficacy of cisplatin in the disease treatment. Both of these DNA-damaging agents result in elix-distorting DNA damage that is recognized and repaired by nucleotide excision repair (NER). The this study was to examine the expression of NER gene transcripts, p53, and p21 in mela...

متن کامل

Repair of UVB-induced DNA damage is reduced in melanoma due to low XPC and global genome repair

UVB exposure leads to DNA damage, which when unrepaired induces C>T transitions. These mutations are found throughout the melanoma genome, particularly in non-transcribed regions. The global genome repair (GGR) branch of nucleotide excision repair (NER) is responsible for repairing UV-induced DNA damage across non-transcribed and silent regions of the genome. This study aimed to examine the rel...

متن کامل

Pathological complete response after cisplatin neoadjuvant therapy is associated with the downregulation of DNA repair genes in BRCA1-associated triple-negative breast cancers

Pathologic complete response (pCR) after neoadjuvant chemotherapy is considered a suitable surrogate marker of treatment efficacy in patients with triple-negative breast cancers (TNBCs). However, the molecular mechanisms underlying pCR as a result of such treatment remain obscure. Using real-time PCR arrays we compared the expression levels of 120 genes involved in the main mechanisms of DNA re...

متن کامل

Similar nucleotide excision repair capacity in melanocytes and melanoma cells.

Sunlight UV exposure produces DNA photoproducts in skin that are repaired solely by nucleotide excision repair in humans. A significant fraction of melanomas are thought to result from UV-induced DNA damage that escapes repair; however, little evidence is available about the functional capacity of normal human melanocytes, malignant melanoma cells, and metastatic melanoma cells to repair UV-ind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 70 20  شماره 

صفحات  -

تاریخ انتشار 2010